INTRODUCING A QUINOLINE GROUP INTO THE BENZENE RING OF 1-ALKYL-2, 3-DIHYDROINDOLES

A. K. Sheinkman, A. N. Kost, and R. D. Bodnarchuk

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 3, No. 1, pp. 183-184, 1967

UDC 547.751+547.831+543.422

When 1-acylquinolinium salts react with an indole, the quinoline portion enters the pyrrole ring of the indole [1]. To prepare quinolylindoles, substituted in the benzene ring, we made use of our previously described method of preparing pyridylindoles by reacting 1-acylpyridinium salts with 1-alkylinolines [2]. It was found that by this method a quinoline group can be introduced into the benzene ring of 1-alkyl-2, 3-dihydroindoles (II), but that with 1-acylquinolinium salts the reaction proceeds without a catalyst, stopping at the state of formation of 1, 2-dihydroquinolines:

The resultant 1-alkyl-5-(1'-benzoyl-1', 2'-dihydroquinolyl-2')-1, 2-dihydroindoles (III), were smoothly hydrolyzed by alkali to give high yields of 1-alkyl-5-(quinolyl-2')-1, 2-dihydroindoles (IV), from which 5-(quinolyl-2')indoles (V) could be obtained by the usual methods of dehydrogenation.

The UV and IR spectra of all the type III compounds were similar to the spectra of 1-benzoyl-2-p-dialkylaminophenyl-1, 2-dihydroquinolines, which indicates the presence of a quinoline group para to the amino group, and confirms structure III.

By reacting quinoline, benzoyl chloride, and II (2: 1; 1) at 100° for 5 hr, we obtained 1-methyl-5-(1'-benzoyl-1', 2'-dihydroquinolyl-2')-1, 2-dihydroindole (**III**, R = Me), in 57% yield, snow-white crystals, mp 116-117° (ex petrol ether), R_f 0.36 (on alumina, using benzene: hexane: CHCl₃ 6: 1: 30), λ_{max} , 265 mµ, ε 17356 (in EtOH). Found: C 81.69; 81.77; H 6.09; 6.11; N 7.37; 7.45%. Calculated for C₂₅H₂₂N₂O. C 81.94; H 6.01; N 7.65%.

1-Ethyl-5-(1'-benzoyl-1', 2'-dihydroquinolyl-2')-1, 2-dihydroindole (III, $R \approx C_2H_5$) was prepared similarly, yield 53%, mp 128-130°. Found: C 81.86; 81.91; H 6.60; 6,41; N 7.52; 7,47%. Calculated for $C_{26}H_{24}N_2O$. C 82.11; H 6.32; N 7.37%.

 $\begin{array}{l} Hydrolysis \ gave \ 1-ethyl-5-(quinolyl-2')-1, \ 2-dihydroindole \ (IV, R=C_2H_5), mp \ 122-123^\circ; \ picrate \ mp \ 193-194^\circ \ (ex \ EtOH). \ Found: \\ N \ 13.67; \ 13.81\%. \ Calculated \ for \ C_{19}H_{18}N_2\cdot C_6H_3N_3O_7. \ N \ 13.91\%. \end{array}$

REFERENCES

 H. Dobeneck and W. Goltzsche, Chem. Ber., 95, 1484, 1962.
A. N. Kost, A. K. Sheinkman, and N. F. Kazarinova, KhGS [Chemistry of Heterocyclic Compounds], 722, 1966.

23 February 1966

Donets Branch of the All-Union Scientific Research Institute for Chemical Reagents and Very Pure Chemical Substances Lomonosov Moscow State University

2, 2'-AZOBENZIMIDAZOLES

A. F. Pozharskii, E. A. Zvezdina, and A. M. Simonov

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 3, No. 1, pp. 184-185, 1967 UDC 547.785.5

Unlike the recently described symmetrical 2, 2'-azoimidazoles [1], their benzimidazoles (II) have hitherto not been known. We have now

prepared the first representatives of this class of compound. The starting materials were the readily accessible N-substituted 2-aminoben-

2,2'-Azobenzimidazoles (II)

R	Мр, С	Solvent for crystallizing	Formula	Found, %			Calculated, %			Yield.
				С	н	N	С	ң	N	%
CH ₃ C ₂ H ₅ C ₆ H ₅ CH ₂	289—290 197 279—280	EtOH EtOAc CHCl ₃ -	C ₁₆ H ₁₄ N ₆ C ₁₈ H ₁₈ N ₆ C ₂₈ H ₂₂ N ₆ .	65.85 68.21 75.56	4.86 5.95 5.29	29.00 26.66 18.96	66.19 67.90 75.99	4.86 5.70 5.01	28.95 26.40 19.00	20 17 36
C ₆ H ₅	260	petrol ether BuOH	C ₂₆ H ₁₈ N ₆	75.02	4.26	20.23	75.32	4.38	20 30	72